
Carlos Jaime Barrios Hernandez, PhD.
SC-CAMP
Turrialba, Costa Rica 2011

Concurrency and
Parallel
Programming

Concurrency and
Parallel
Programming

La répétition sur la scène, 1874, Edgar Degas, Paris, Musée d'Orsay.

  Design Spaces of Parallel Programming Recall

  Concurrent Programming

  Distributed Memory Vs. Shared Memory

  Design Models for Concurrent Algorithms

  Task Decomposition

  Data Decomposition

  Concurrent Algorithm Design Features and Forces

  Not Parallelizable Jobs, Tasks and Algorithms

  Algorithm Structures

  Final Notes

• Patterns for Parallel Programming, Timoty Mattson, Beverly A. Sanders and Berna L. Massingill,
 Software Pattern Series, Addison-Wesley 2004

FC
• Finding Concurrency (Structuring Problem

to expose exploitable concurrency)

AS
• Algorithm Structure (Structure Algorithm to

take advantage of Concurrency)

SS
• Supporting Structures (Interfaces between

Algorithms and Environments)

IM
• Implementation Mechanisms (Define

Programming Environments)

 A system is “concurrent” if it
can support two or more
actions in progress at the same
time

 A system is “parallel” if it can
support two or more actions
executing simultaneously

1.  Analysis
  Identify Possible Concurrency

  Hotspot: Any partition of the code that has a significant
amount of activity

  Timespent, Independence of the code…

2.  Design and Implementation

  Threading the algorithm

3.  Tests of Correctness

  Detecting and Fixing Threading Errors

4.  Tune of Performance

  Removing Performance Bottlenecks

  Logical errors, contention, synchronization errors, imbalance,
excessive overhead

  Tuning Performance Problems in the code (tuning cycles)

Common Features
  Redundant Work

  Dividing Work

  Sharing Data (Different
Methods)

  Dynamic / Static Allocation of
Work
  Depending of the nature of

serial algorithm, resulting
concurrent version, number
of threads / processors

Only to Shared Memory
  Local Declarations and Thread-

Local Storage

  Memory Effects:

  False Sharing

  Communication in Memory

  Mutual Exclusion

  Producer / Consumer Model

  Reader / Writer Locks (In
Distributed Memory is Boss /
Worker)

 Tasks Decomposition : Task Parallelism

 Data Decomposition: Tata Parallelism

 Sequential
Consistency Property:
Getting the same
answer as the serial
code on the same
input data set,
comparing sequence
of execution in
concurrent solutions
of the concurrent
algorithms.

in P out

in P out

P

P

Sequential Version

Parallel / Concurrent Version

 What are the tasks and how are defined?

 What are the dependencies between task
and how can they be satisfied?

 How are the task assigned to threads?

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

task

overhead

tas
k

Fine-grained decomposition Coarse-grained decomposition

Order Dependency Data Dependency

Process 1

Process 2

Out

in In 1 In 2

Process 1

Process 3

Process 2

Out 1 Out 2

Process 3

Out

Data Structures must be (commonly) divided in arrays or logical
structures.

•  How should you divide the data into
chunks?

•  How should you ensure that the tasks
for each chunk have access to all
data required for update?

•  How are the data chunks assigned to
threads?

By individual elements By rows

By groups of columns By blocks

  Data Decomposition have an additional dimension.

  It determines what the neighboring chunks are and how any exchange of
data will be handled during the course of the chunk computations.

2 Shared Borders

•  Regular shapes : Common Regular data organizations.
•  Irregular shapes: may be necessary due to the irregular

organizations of the data.

5 Shared Borders

 Using Ghost Cells
 Using ghost cells to hold copied data from a neighboring

chunk.

Original split with ghost cells

Copying data into ghost cells

 Data Chunks are associated with tasks and are
assigned to threads statically or dynamically

 Via Scheduling
  Static: when the amount of computations within

tasks is uniform and predictable

 Dynamic: to achieve a good balance due to
variability in the computation needed by chunk

 Require many (more) tasks than threads.

  Task Decomposition Pattern
  Understand the computationally intensive parts of the problem.

  Finding Tasks (as much…)

  Actions that are carried out to solve the problem

  Actions are distinct and relatively independent.

  Data Decomposition Pattern

  Data decomposition implied by tasks.

  Finding Domains:

  Most computationally intensive part of the problem is
organized around the manipulation of large data structure.

  Similar operators are being applied to different parts of the
data structure.

  In shared memory programming environments, data
decomposition will be implied by task decomposition.

 Group Tasks Pattern
  Simplify the problem dependency analysis

  If a group of tasks must work together on a data
shared structure

  If a group of tasks are dependent

 Order Tasks Pattern
  Find and correctly account for dependencies

resulting from constraints on the order of execution
of a collection of tasks.

  Temporal dependencies

  Specific Requirements of the tasks

 Data decomposition might define some data
that must be shared among the tasks.

 Data dependencies can also occur when one
task needs access to some portions of the
another task’s local data.
 Read Only

  Effectively Local (Accessed by one of the tasks)

 Read Write

 Accumulative

 Multiple read / Single Write

 Production of analysis and decomposition:
 Task decomposition to identify concurrency

 Data decomposition to indentify data local to each task

 Group of task and order of groups to satisfy temporal
constraints

 Dependencies among tasks

 Design Evaluation
 Suitability for the target platform

 Design Quality

 Preparation for the next phase of the design

 Algorithms with state

 Recurrences

  Induction Variables

 Reductions

 Loop-carried Dependencies

The Mythical Man-Month: Essays on Software Engineering. By Fred
Brooks. Ed Addison-Wesley Professional, 1995

 Organizing by Tasks
  Task Parallelism

 Divide and Conquer

 Organizing by Data Decomposition
 Geometric Decomposition

 Recursive Data

 Organizing by Flow of Data
 Pipeline

  Event-Based Coordination

Start

Organize By Tasks

Linear Recursive

Organize By Data Decomposition

Linear Recursive

Organize By Flow of Data

Linear Recursive

Problem

Subproblem Subproblem Subproblem Subproblem

Subsolution Subsolution Subsolution Subsolution

Subproblem Subproblem

Subsolution Subsolution

Solution

split

split split

Solve Solve Solve Solve

Merge

Merge Merge

split

base-
case
solve

base-
case
solve

merge

split

base-
case
solve

base-
case
solve

merge

split

merge

Each dashed-line box represents a task

  Involves an operation on a
recursive data structure that
appears to require sequential
processing:
  Lists
  Trees
  Graphs

  Recursive Data structure is
completely decomposed into
individual elements.

  Structure in the form of a loop
(top-level structure)

  Simultaneously updating all
elements of the data structure
(Synchronization)

  Examples:
  Partial sums of a linked list.

  Uses:

  Widely used on SIMD platforms
(HPF77)

  Combinatorial optimization
Problems.

  Partial sums
  List ranking
  Euler tours and ear

decomposition
  Finding roots of trees in a forest

of rooted directed trees.

  Involves performing a
calculation on many sets of
data, where the calculation
can be viewed in terms of
data flowing through a
sequence of stages
  Instruction pipeline in

modern CPUs
  Vector Processing (Loop-

level pipelining)
  Algorithm-level Pipelining
  Signal Processing

 Graphics
  Shell Programs in Unix

 Application decomposed
into groups of semi-
independent tasks
interacting in an irregular
fashion.

  Interaction determined by a
flow of data between the
groups, implying ordering
constraints between the
tasks

1

2

3

 Every Parallel Algorithm involves a collection of tasks that can
execute concurrently
  The key is finding tasks (and collect them)

 Data-based decomposition is good if:
  The most computationally intensive part of the problem is organized

around the manipulation of a large data set structure.
  Similar operations are being applied to different parts of the data structure

with independency.

 However the desired features of a concurrent/parallel program
(efficiency, simplicity, portability and scalability):
  Efficiency conflicts with portability
  Efficiency conflicts with simplicity

 Thus a good algorithm design must strike a balance between
abstraction and portability and suitability for a particular target
architecture.

  The Art of Concurrency “A thread Monkey’s Guide to Writing Parallel
Applications”, by Clay Breshears (Ed. O Reilly, 2009)

 Writing Concurrent Systems. Part 1., by David Chisnall (InformIT Author’s
Blog: http://www.informit.com/articles/article.aspx?p=1626979)

  Patterns for Parallel Programming., by T. Mattson., B. Sanders and B.
MassinGill (Ed. Addison Weslley, 2009) Web Site: http://www.cise.ufl.edu/
research/ParallelPatterns/

